Licht ins Dunkel bringt nun eine Arbeit von Forschern des Karlsruher Instituts für Technologie (KIT), die in der Fach-zeitschrift "Science" erschienen ist. Die Veröffentlichung der Chemiker Professor Hansgeorg Schnöckel und Dr. Ralf Burgert zeigt, dass der Spin, also der Drehimpuls der Elektronen, die für die Bindung zwischen den Atomen verantwortlich sind, bei der Korrosion von Metallen entscheidend ist. Als Modellsystem stellten die Wissen-schaftler Nanopartikel aus wenigen Aluminiumatomen her. Für die Untersuchung dieser als Cluster bezeichneten Strukturen nutzten sie die Fourier-Transform-Massenspektrometrie, ein Verfahren, das bisher vor allem bei der Analyse von Proteinen eingesetzt wurde.
Quantenmechanik bestimmt Reaktion von Sauerstoff mit Metallen
In Zusammenarbeit mit amerikanischen Wissenschaftlern aus Baltimore, Lake Charles und Richmond sowie Forschern an der Universität Konstanz konnten die Chemiker nachweisen, dass der Spin bestimmt, ob es zu einer spontanen Oxidation kommt oder nicht. Entscheidend ist, dass die Spins bei beiden Reaktionspartnern zueinander passen, denn nach den "Spin-Auswahlregeln" sind nur bestimmte Kombinationen möglich.
"Eigentlich müsste um uns herum alles brennen, denn unsere Luft enthält 20 Prozent Sauerstoff", erläutert Schnöckel, der am Centrum für Funktionelle Nanostrukturen des KIT arbeitet. "Zum Glück existiert Sauerstoff in unterschiedlichen quantenmechanischen Formen. Aufgrund der Elektronenzustände hat er als Triplett-Sauerstoff, also in seiner ‚Normalform’, die niedrigste Energie und magnetische Eigenschaften. Nur durch die Zufuhr von Energie, etwa durch UV-Strahlung in den oberen Schichten der Atmosphäre oder durch chemische Reaktionen im Labor, entsteht Singulett-Sauerstoff. Er ist nicht magnetisch und aufgrund seiner höheren Energie sehr instabil." Schnöckels Team konnte nachwei-sen, dass nur diese Form spontan, ohne Energiezufuhr, einen hoch stabilen Cluster aus 13 Aluminiumatomen (Al13) oxidiert. Hierfür fingen sie negativ geladene Al13-Cluster im Magnetfeld eines Mas-senspektrometers auf einer Kreisbahn ein. Durch elektrische Entladungen produzierten sie Singulett-Sauerstoff, der im Hochvaku-um des Geräts über längere Zeit stabil ist. Da die Reaktionspartner nur in geringer Konzentration vorliegen, trifft ein Molekül nur etwa alle zehn Sekunden auf einen Aluminium-Cluster - genug Zeit, um den schnellen ersten Reaktionsschritt der Oxidation zu messen. Im gleichen Experiment reagierte ein Cluster mit 14 Aluminiumato-men, der selbst wie ein winziger Magnet wirkt, nicht mit Singulett-, sondern mit Triplett-Sauerstoff.
Bisher hat das Team ausschließlich kleine Aluminium-Cluster untersucht. Ihre regelmäßige Struktur mache sie zu idealen Versuchsobjekten, so Schnöckel. "Vereinfacht gesagt verhalten sich Al13-Cluster wie Aluminium-Metall." Seine Untersuchungen und Methoden können aber auch auf andere Reaktionen mit Sauerstoff, wie sie etwa bei Verbrennungsvorgängen oder bei der Zersetzung von Kunststoffen auftreten, übertragen werden, um sie besser zu verstehen und kontrollieren zu können.
Ein negativ geladener Al13-Cluster mit seiner stabilen Elektronenstruktur reagiert nur langsam mit einem Sauerstoff-Molekül im Triplett-Zustand (rot). Das Molekül verhält sich aufgrund der Dreh-richtung seiner Elektronen (Spin) wie ein kleiner Magnet und ist nur eingeschränkt reaktionsfähig.Der Elektronenspin beim nicht-magnetischen Singulett-Sauerstoffmolekül (rot) erlaubt eine schnelle Bindung an das negativ geladene Al13-Ion. In einem Zwischenschritt verformt sich der Cluster, der am Ende der Oxidationsreaktion in zwei Moleküle Aluminiumoxid und ein instabiles Al9-Ion zerfällt.Eine Million Euro kostet das von der Deutschen Forschungsgemeinschaft geförderte Massenspektrometer, mit dem die Karlsruher Chemiker erforschen, wie Nanopartikel aus Aluminium mit Sauerstoff reagieren.